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Abstract. This paper proposes a new metaheuristic algorithm with a search space reduction 

capability guided by simple formalism. The search population focuses partially on the 

inside the local search area while the rest explore globally, looking for better search areas. 

We call the new algorithm by YUKI (YA) and employ it in a crack identification problem. 

With the aid of a set of measurements taken on the defected structure, we aim at identifying 

the crack parameters such as length and orientation. To this end, we use the so-called model 

reduction technique through Proper orthogonal Decomposition (POD) endorsed with 

Radial Basic Function (RBF), which helps in predicting (numerically) the measurement at 

new points (out of the set of sensors) via interpolation. This method is widely used in this 

context and was proven very effective computational-wise. In our study of the performance 

of YA, we deal with two cases; Firstly, in the case of the Elastostatic study.  And secondly, 

in the case of dynamic analysis. We compare the performance of the suggested algorithm 

with the performance of well-known optimization methods, such as Teaching Learning 

Based Optimization (TLBO), Cuckoo Search (CS), and the Grey Wolf Optimizer (GWO). 

The results show that YA provides accurate and faster results compared to the mentioned 

algorithms.  

 

Keywords:  YA, POD-RBF, Crack identification, Inverse problem, Static and Dynamic 

Analysis.  
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1 Introduction 

 

Structural health monitoring (SHM) is essential for engineering applications such as beams, plates, 

bridges, and offshore. Inverse crack identification predicts the unknown crack characteristics inside a 

structure (size, position, and orientation) using the structural response to an exerted excitation. 

Theoretical backgrounds related to inverse crack identification in mechanics are thoroughly developed; 

we refer the reader to [1-3]. Elastostatic approaches consider crack identification as a geometrical 

inverse problem based on measurable data for given boundary conditions, namely the material 

properties, geometry, and loading conditions [3, 4]. On the other hand, approaches based on dynamic 

studies formulate the problem using the vibrational response of structures [5, 6]. There exist non-

mechanical crack detection techniques such as [7-9]. 

 

In inverse crack identification, the evaluation function generally compares, in an iterative search, 

between the measured structural response and the estimated counterpart. In such cases, where the 

behavior is not linear, metaheuristic optimization methods are powerful tools for predicting the unknown 

crack parameters by minimizing such comparison function at the cost of significant computational 

efforts. Moreover, they often require thousands of fitness evaluations, corresponding to several 

simulation runs at every iteration [4, 10-19]. Nonetheless, model reduction techniques contribute heavily 

to such computationally demanding approaches. 

 

Proper Orthogonal Decomposition (POD) is an efficient model reduction technique based on the 

projection of the original model onto a subspace using full model snapshots [20-22]. This method offers 

a computational cost advantage [23-27]. Winton et al. [23], the authors coupled the POD with 

Levenberg–Marquardt optimization to approximate the property of hydraulic conductivity in saturated 

domains. Furthermore, in [24], this model reduction method has been used to estimate unknown heat 

conductivities and film coefficient distribution. Brigham et al. [25] presented a POD and Finite Element 

Method for Iscoelastic material characterization. Finally, Rogers et al. [26] tackled the conduction 

problem in different structures to estimate the Isotropic material parameters of a 3D bar in tension.  

 

Radial Basis Functions (RBF) is a powerful interpolation method characterized by handling a random 

distribution of data points. It gives the possibility to consider a large number of variables [28-35]. In 

[28], Buljak and Mier developed the POD-RBF approach based on simulation data to estimate material 

properties in the indentation test. Similarly, in [29], Hoang et al. used this method to characterize 

interface tissue in dental implant systems. In [32], POD-RBF is used to estimate the depth residual stress 

profiles induced by surface treatment of metal components.  Also allowed using data that is entirely 

experimental [36]. In [22] POD-RBF model is built up based on the vibration response of a composite 

beam to identify crack position and size. In [37], Bocciarelli et al. used the POD-RBF techniques to 

characterize metallic materials in the case indentation test using experimental data. Deep Neural 

Networks (DNN) are being used to advance damage identification research. In [38], Cosmin et al. 

suggest an approach to the boundary values problem. The mesh-free method uses scattered sets of points 

in the training and evaluation sets. Such learning methods can be used for solving the forward and 

inverse problem simultaneously.  

 

Metaheuristic techniques have become popular over the last decade. The popularity of these 

algorithms is due to several factors, including their versatility, gradient-free mechanism, and avoidance 

of local optima. The first two benefits stem from the fact that metaheuristics only look at the inputs and 

outputs when considering and solving optimization problems. They are highly adaptable when it comes 

to solving ill-posed inverse problems. Artificial bee colony algorithm was used in flaws prediction 
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problem, using extended Finite Element Method  (XFEM) in a dynamic study of a plate [5]. Genetic 

Algorithm (GA) was used in [6, 39] to detect cracks in flat membrane structures under static and 

dynamic loads. [40] compares the performance of Particle Swarm Optimization to GA in the crack 

identification study based on POD-RBF. Jaya algorithm is used with Artificial Neural Network to 

identify crack size and orientation based on experimental vibration modes [41]. 

 

This paper suggests a new metaheuristic algorithm to solves the inverse crack identification problem. 

We are considering two cases. The first case is an Elastostatic study based on FEM. And the second is 

the dynamic study based on experimental data. Furthermore, finally, we compare the performance of 

the suggested algorithm to the well-known algorithms. Namely Cuckoo Search (CS) [42], Teaching 

Learning Based Optimization (TLBO) [43], and the Grey Wolf Optimizer (GWO) [44].  

 

We organize the rest of the paper as follows: Section 2 describes the YUKI algorithm in detail.  In 

Section 3, we present the POD-RBF method. Section 4 discusses the crack identification formulation in 

the Elastostatic study, where first, we present the POD-RBF model details and the prediction validation 

with FEM results. Sections 4.3 to 4.5 discuss the crack identification results in cases of different crack 

sizes and orientations, with noisy data, and with a limited number of sensors. Section 4.6 compares the 

performance of YA to other algorithms in terms of precision and computational cost. Section 5 discusses 

crack identification in the case of a dynamic study based on experimental data. In 5.1, we present the 

experimental setup. In section 5.2, the POD-RBF model details are presented, followed by validation 

with experimental output. Finally, in Sections 5.3 and 5.4, the results of crack identification are 

discussed, Comparing YA with other algorithms in terms of precision and computational cost.  

2 Yuki algorithm for inverse crack identification 

 

This algorithm suggests a principle of dynamic search space reduction. By creating a local search 

area around the absolute best solution found so far. The algorithm adapts the size of the search area 

dynamically throughout the progress of the search, using the distance between two points as a reference.  

 

The first point is the absolute best point. It corresponds to the minimum fitness value. Furthermore, 

The second point is called MeanBest. We calculate this point as the center of the “best points” could. 

The best points here are the best solutions found so far by each member of the YA population.  

 

 
Figure 1. Illustration of the MeanBest point.  

 

The following expression calculates the local boundaries: 

 

𝐷 = |𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑀𝑒𝑎𝑛𝐵𝑒𝑠𝑡|        (1) 

 

𝑳𝑻 = 𝑋𝑏𝑒𝑠𝑡 + 𝐷       (2) 

𝑳𝑩 = 𝑋𝑏𝑒𝑠𝑡 − 𝐷       (3) 
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Respectively 𝑳𝑻  and 𝑳𝑩  are the Local top and bottom boundaries of the local search space. 

Furthermore 𝑿𝒃𝒆𝒔𝒕 Is the point corresponding to the absolute best fitness value at the current iteration. 

And the term 𝑿𝑴𝒆𝒂𝒏𝑩𝒆𝒔𝒕 is the mean of the Best Points vector.  

 
Figure 2. Illustration of the local search area. The red circle stands for the absolute best point, and 

the blue rhombus represents the MeanBest point. 

 

The second concept is to create a random distribution of points 𝑿𝒍𝒐𝒄 Inside the local search area, split 

the search into two parts; One part of the population to explore outside the local search area. The other 

is assigned to focus on searching around the center of the search area. The size of the exploration 

population changes iteratively in this manner: 

 

𝑖𝑓 𝑟𝑎𝑛𝑑 <  1 − 𝐾 / 𝐾𝑚𝑎𝑥       (4) 

 

Eq. 4 condition compares the randomly generated value, between 0 and 1, to the output of the Eq. 4 

expression, which is also between 0 and 1.  𝑲 is the current iteration and 𝑲𝒎𝒂𝒙 Represent the value of 

maximum iteration set initially as a stopping criterion. At early iterations, the output corresponds to a 

high possibility for the “if statement” to be True, and at late iterations, this possibility decreases linearly. 

This way, we assign most of the population toward exploring initially, then slowly shift toward 

exploitation.  

 

Exploration population look in the direction away from the MeanBest expressed as follows:  

 

𝐸 = 𝑋𝑙𝑜𝑐 − 𝑟𝑎𝑛𝑑𝑖(10) × 𝑋𝑀𝑒𝑎𝑛𝐵𝑒𝑠𝑡      (5) 

 

Where 𝒓𝒂𝒏𝒅𝒊(𝟒) is a random integer between 1 and the value of the exploration control parameter 

chosen as an integer between 2 and 10, the following equation calculates the new solutions:   

 

𝑋𝑛𝑒𝑤 = 𝑋𝑙𝑜𝑐 + 𝑟𝑎𝑛𝑑 ×  𝐸        (6) 

 

“rand” here stands for a random value between 0 and 1. Note here that we use the same random value 

for all design variables.  

 

The rest of the population, not assigned to exploration, is pushed to search around the local area 

center. The following equation governs this process:  

 

𝑭 = 𝑋𝑙𝑜𝑐 − 𝑋𝑏𝑒𝑠𝑡          (7) 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑙𝑜𝑐 − 𝑟𝑎𝑛𝑑 ×  𝑭                 (8) 

 

Where 𝑭 is the distance between the selected local point to the absolute best solution, similarly, rand 

here is the random value between 0 and 1. Note also here that we use the same random value for all 

design variables.  
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Figure 3. Illustration of the exploration and focus concepts.  

 

 

We update the absolute best solution and the individual best solutions at the end of each iteration. 

For details, Fig.4 shows the YA pseudo-code. 

 

In this study of crack identification, the fitness function is: 

 

{
𝑓(𝑷) =

‖𝒖(𝑷0)− 𝒖(𝑷)‖2

‖𝒖(𝑷0)‖2

𝑓(𝑷𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = 𝑚𝑖𝑛 [𝑓(𝑷)]
                (9) 

 

Where the response vectors 𝐮(𝐏) of the suggested cracks is compared to the reference response 

𝐮(𝐏0) That was caused by the unknown crack. 

 

 

The following points discuss the theory of the suggested algorithm.  

• By exporting new areas situated away from the MeanBest point, we focus the exploration 

effort in one direction, which increases the possibility of finding new solutions compared to 

randomly exploring the global area.  

• By multiplying the MeanBest value to a random integer, we create a pulsating effect, 

essential for suggesting different solutions in every iteration. It also helps extend the reach 

of the search. 

• As long as there is good coverage of the global search space, the distance between Best 

Points remains safely large. Thus the local search area avoids collapsing on a local optimum.  

• The search area sizes are independent across search dimensions. Because this algorithm can 

create variations for which the local search area is significant in one dimension and very 

small in another dimension. Thus the search focus is reacting to the sensitivity of each design 

variable.  

• The local search area's size can increase dynamically if the algorithm finds a new best 

solution far from the current local search area.   

• As solutions converge to the optimum, the local search area gets smaller,  
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Yuki algorithm pseudo-code 

𝐿𝑜𝑎𝑑 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑋 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑋𝑀𝑒𝑎𝑛𝐵𝑒𝑠𝑡 𝑎𝑛𝑑 𝑋𝑏𝑒𝑠𝑡 

𝒇𝒐𝒓 𝐾 = 1 𝑡𝑜 𝐾𝑚𝑎𝑥 

    𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 

    𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

    𝒊𝒇 𝑟𝑎𝑛𝑑 <  1 − 𝐾 /𝐾𝑚𝑎𝑥 

        𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

    𝒆𝒍𝒔𝒆 

        𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑓𝑜𝑐𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

    𝒆𝒏𝒅 

    𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑋𝑀𝑒𝑎𝑛𝐵𝑒𝑠𝑡 

    𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑋𝑏𝑒𝑠𝑡  𝑖𝑓 𝑏𝑒𝑡𝑡𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑓𝑜𝑢𝑛𝑑 

𝒆𝒏𝒅 

𝑟𝑒𝑡𝑢𝑟𝑛  𝑋𝑏𝑒𝑠𝑡 

 

Figure 4. YUKI Algorithm. 

3 POD-RBF for static crack identification problem  

 

POD is used in this study, coupled with the interpolation method RBF to provide the structural response 

in the inverse problem. Based on data measured a priori and stored in the matrix U.  

𝐔 =

[
 
 
 
 
u1

1 u1
2

u2
1 u2

2 ⋯
u1

S

u2
S

⋮   ⋮ ⋱ ⋮

uN
1 uN

2 ⋯ uN
S ]
 
 
 
 

      (10) 

𝐔 is constituted of N snapshots, denoted as 𝑢𝑗   (for 𝑗 =  1, 2 …  𝑆). S is the size of the snapshot 

vector. In this study, the size of the structural response data. On the other hand, the matrix 𝐏 =  ( 

[[𝐋𝟏, 𝜽𝟏],… , [𝐋𝑵, 𝜽𝑵]])  stores the crack parameters. L is the crack length, and 𝜽 is its orientation. In the 

Elastostatic study, detailed in section 4.1, the snapshot consists of boundary displacement measurements 

at boundary nodes. Furthermore, in the dynamic study, detailed in section 5.2, the Frequency Response 

Function measurements constitute the snapshot matrix.  

 

At this point, we extract a set of orthogonal vectors 𝚽, upon which we project the measurement data 

matrix U to obtain the amplitude matrix A as follows: 

𝐀 = 𝚽T ⋅ 𝐔                   (11) 

Matrix A approximates the structural response data. It is worth noticing here that we calculate 𝚽  through 

the POD operation [28, 45], by extracting the eigenvectors of the covariance matrix 𝐂= 𝐔T ⋅ 𝐔, through 

singular value decomposition. We then perform a truncation to reduce the basis vectors 𝚽 and formulate 

a lower rank version �̂� by preserving the first k (k ≪ S) columns of 𝚽 that correspond to the largest 

eigenvalues. Consequently, a new amplitude matrix �̂� writes: 

�̂� =  �̂�T ⋅ 𝐔.      (12) 
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Note here that one can recover the original data using the reduced model by the following 

approximation.   

  𝐔 ≈ �̂� ⋅ 𝐀.̂       (13) 

At this step, we link the structural response data to the crack parameters through Radial Basis Function 

(RBF) and a coefficient matrix B and an interpolation matrix G as 𝐁 ⋅ 𝐆 = �̂�. 

In the case where G is a non-singular matrix, one can write the following expression 

𝐁 = �̂�  ∙ 𝐆−1.      (14) 

Here, the matrix of interpolation G is persymmetric, and it englobes the RBF function:  𝐠i(𝐩) = |𝐩 − 𝐩i| 

as such  

𝐆 = [

𝑔(|p1 − p1|) 𝑔(|p1 − p2|)

𝑔(|p2 − p1|) 𝑔(|p2 − p2|)
⋯

𝑔(|p1 − pN|)

𝑔(|p2 − pN|)
⋮   ⋮ ⋱ ⋮

𝑔(|pN − p1|) 𝑔(|pN − p2|) ⋯ 𝑔(|pN − pN|)

]        (15) 

 𝐠i(𝐩) calculated for each parameter in the matrix G where 𝐩i is the parameter corresponding to 𝐔i 

(i=1,2,…,N). The argument of the i-th RBF is the distance |𝐩 − 𝐩i|, 𝐩 and 𝐩i being respectively current 

and reference parameters.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. POD-RBF methodology 

 

Compute POD basis of Matrix U 

𝚽 = 

⬚ ⬚ … 𝛷1
𝑆

⬚ 𝛷𝑖 ⬚

𝛷𝑆
1 ⬚ 𝛷𝑆

𝑆

 

 

Truncate 𝚽 to find �̂� 
and compute corresponding amplitude 

Matrix by �̂� =  �̂�T ⋅ 𝐔 

𝐔 ≈ �̂� ⋅ �̂� 
  

Choose the RBF interpolation  

𝒈𝒊(p) = (|𝐩 − 𝐩i|) 
and compute the matrix G 

Solve 𝐴ҧ = B·G to get coefficient of 
interpolation collected in matrix B 

Caulcate for the new parameters 
 

g(𝒑new) = 

[
 
 
 
 
𝒈1(𝑷)

𝒈2(𝑷)
⋮
⋮

𝒈𝑁(𝑷)]
 
 
 
 

 

 
and get approximation of response  

𝐮(𝐩𝑛𝑒𝑤) ≈ �̂� ⋅ 𝐚(𝐩𝑛𝑒𝑤) 
 

P: Crack parameters 
U: Response matrix 

Compute C =U.U
T
and its eigenvalues 𝜆𝑖   

and eigenvectors 𝑣𝑖  
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After we calculate the coefficient matrix  𝐁, a low-dimensional model of Eq. (14) is put in vector 

form, as follows, and used to calculate the amplitude vector 𝐚(𝐩𝑛𝑒𝑤) for new parameters, outside the 

positions of the sensors: 

 𝐚(𝐩𝑛𝑒𝑤) = 𝐁 ⋅ 𝐠(𝐩𝑛𝑒𝑤)                       (15) 

Eq. (14)  rewrites then in a vector form to calculate the interpolated data 𝐮 corresponding to the new 

cracks parameter 𝐩𝑛𝑒𝑤 . This way, we calculate the structural response corresponding to the new crack: 

  𝐮(𝐩𝑛𝑒𝑤) ≈ �̂� ⋅ 𝐚(𝐩𝑛𝑒𝑤)                                          (16) 

The POD-RBF model, Eq 16. is, therefore, able to reproduce unknown structural responses 

corresponding to any set of crack parameters 𝐩. However, note that it can lead to weak precision due to 

the extrapolation outside the range of measured crack parameters p. Fig.5. summarize building the POD-

RBF.  

4 Identification using static boundary displacement 

4.1 FEM simulation setup  

 

For this two-dimensional stress  analysis  problems  under  plane  strain conditions, eight basic 

independent parameters: 𝒖, 𝒗, 𝜺𝒙, 𝜺𝒚, 𝜸𝒙𝒚, 𝝈𝒙, 𝝈𝒚, 𝝉𝒙𝒚  [46]. 𝑢  and 𝑣  are the displacements in X and Y 

direction respectively, 𝜺𝒙, 𝜺𝒚 are normal strain components, 𝜸𝒙𝒚 is the Shear strain component, 𝜎𝑥, 𝜎𝑦 are 

normal stress components and 𝝉𝒙𝒚 is the shear stress component. 

Elastostatics here means the study of linear elasticity under the conditions of equilibrium, in which all 

forces on the elastic body sum to zero and 𝝉𝒙𝒚 = 𝝉𝒚𝒙. The displacements are not a function of time. 

Furthermore, the components of Cauchy's strain tensor for minor strain problems follow this strain 

displacement relationship: 

𝜺𝒙 =
𝜕𝒖

𝜕𝑥
,    𝜺𝒚 =

𝜕𝒗

𝜕𝑦
,   𝜸𝒙𝒚 =

𝜕𝒗

𝜕𝑥
+

𝜕𝒖

𝜕𝑦
    (16) 

For isotropically elastic materials, the stress components are related to the strain components by 

Hooke's law as  𝝈 = 𝑬𝜺 where 𝑬  is Young's modulus. 

For the FEM simulation, we consider a plate with 1mm thickness, 30 mm height, and 10 mm width 

(Fig. 6). With a Young modulus 𝑬 of 210 GPa and Poisson coefficient of 0.3. Under a displacement of 

0.3 mm at the upper and lower sides of the plate.  

The vertical side is meshed using 120 quadrilaterals and the horizontal side with 40 elements. The 

meshing of the crack consists of two types of areas: the crack tips, covering both crack endings, and the 

middle of the crack. Crack tips are meshed by the sweep function. The circular area has 0.5 mm of the 

radius, divided into 20 elements along the contour of the circle. And 10 elements along the radius of the 

circle. There is a total of 200 elements concentrated at each tip of the crack.  
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Figure 6. Cracked specimen 

 

4.2. The POD-RBF model validation  

 

The snapshot matrix 𝐔 consists of the measured displacement at the right vertical side (Eq. 10). The 

crack length s and the crack orientation 𝜽 are the parameters that are subject to identification within this 

interval: 

𝑂 𝑚𝑚 ≤ 𝑠 ≤ 5 𝑚𝑚  and     0° ≤ 𝜃 ≤ 60°.                                      (18) 

The reduced model is constructed using the boundary displacement measured from 111 FE 

simulations, with length and orientation values of crack obtained by dividing the intervals of ( Eq. 18) 

into steps of 6° for 𝜽 and 0.5 mm for s. Plus, one case representing structure without crack.  

We truncate the reduced basis model using the first 16 vectors, at the point where the ratio between 

the eigenvalues of the neglected vectors and the retained ones becomes less than 10-11, as shown in Fig.7.  

Fig. 8 compares the POD-RBF predictions with the FE boundary displacements.  

 

 
Figure 7. The truncation point on the Elastostatic model 
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Fig. 6 report the error between both boundary displacements in each boundary node. For a crack with 

a length of 3.3 mm and with an orientation of 37.5°. This figure highlights a good agreement between 

the model predictions and FE results, except around the middle of the plate, around node 62, where 

appears a sudden divergence. We see this discrepancy because the node 62 at the center line, where 

displacements are close to zero independently from the loading level. This effect makes the error values 

that can be considered small appear very large in extremely small-displacement values.   

 

 
Figure 8. The error of POD-RBF boundary displacement    

 

4.3. Fitness evaluation based on all boundary data 

 

10 test cracks are studied (C1 to C10) with different sizes and orientations. To solve this inverse problem, 

YA is run 20 times for each test crack, using a population of 30, and the maximum number of iterations 

is 100. Table 1 present the results in the form of an average over the 20 runs.  

Figs. 9 displays the example of fitness convergence and the convergence of the crack parameters for 

the cases C2 (Table 1). In Fig. 9(a) at the 40th iteration, the function 𝑓(𝑃) Reach a value of ~1.0-4.  While 

Fig. 9 (b) highlights that the predicted crack length converged toward a solution near the exact value 

after the 40th iteration. However, the crack orientation in Fig.9 (c) converged toward a solution close to 

the exact value after the 70th iteration.  

The test cracks cover the different sizes and orientations, with cases of the same size and variable 

orientations. Also, cases with the same orientations and variable size. The results in table 1. present error 

as the absolute difference between the actual and predicted crack. The maximum error for crack size is 

0.61 mm in the case of the largest crack. As well as for crack orientation is 3.94° also in the case of 

largest orientation.  

(a) (b) (c) 

   
 

Figure 9. C2 Crack identification  
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Table 1. Identified cracks using boundary displacement at all boundary nodes 

Studied cases Real crack Estimated crack Error 

 s (mm) 𝜃 (°) s (mm) 𝜃 (°) s (%) 𝜃 (%) 

C1 1.2 10.0 1.33 10.18 10.83 1.8 

C2 2.5 10.0 2.06 10.06 17.6 0.6 

C3 3.3  10.0 3.57 9.43 8.18 5.7 

C4 4.9 10.0 4.97 10. 35 1.42 3.5 

C5  1.2 15.0 1.32 14.22 10 5.2 

C6 1.2 37.5 1.34 35.29 11.6 5.89 

C7 3.3 17.0 3.51 14.27 6.36 16.05 

C8 3.3 37.5 3.19 37.49 3.33 0.02 

C9 3.3 60.0 3.12 56.06 5.45 6.56 

C10 5.0 37.5 4.39 33.88 12.2 9.65 

 

4.4 Fitness evaluation based on noisy data 

 

We study the sensitivity of the crack identification approach against measurement uncertainty. We 

simulate it by introducing white Gaussian noise to the input displacement vector. Four levels of 1%, 2%, 

3%, 5%, and 10%.  

 

Fig. 10 present the average errors across all crack cases as a function of the noise level. The error here 

is the absolute difference between the actual crack parameter and the predicted ones. This figure shows 

that errors increase with the rise of the noise levels. However, one can note that the effect on crack 

orientation prediction is more significant, reaches 40% for the highest noise level of 10%. These results 

suggest that the approach proposed in this work shows higher stability for crack size prediction than 

crack orientation. However, the 5% and 10% noises are far more extensive than measurement 

uncertainty tolerance levels in the industry.  

 

 

Figure 10. Effect of noise level on the average prediction error for all cracks   
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In reasonable uncertainty levels of 1% and 2%, the results slightly increase the crack size and orientation 

error. It is noticeable that the orientation errors exceed size errors beyond 3% noise. This is because 

variation in crack orientation reflects on the displacement at a smaller number of boundary nodes than 

the variation in crack length. Therefore, it is harder to distinguish between boundary displacements 

corresponding to different crack orientations from the inverse problem perspective. 

4.5 Identification using a small number of sensor points  

The results discussed above were determined using the displacements of all boundary nodes of the 

specimen. This section discusses the results obtained using only four sensor points represented in Fig. 6 

by circles. The nodes 33, 41, 81, and 89 are located at 22 mm, 20 mm, 10 mm, and 8 mm. Under a noise 

level of 2%. Table 2. present the results. They showed that reducing the sensor point number to 4 did 

not globally affect the identification performance of the model.  

 

Table 2. Identified cracks using boundary displacement at four nodes 

 

Studied cases Real crack Estimated crack Error 

 s (mm) 𝜃 (°) s (mm) 𝜃 (°) s (%) 𝜃 (%) 

C1 1.2 10 1.51 9.74 25.83 2.6 

C2 2.5 10 2.99 9.06 19.6 9.4 

C3 3.3  10 3.51 10.88 6.36 8.8 

C4 4.9 10 4.94 10.15 0.81 1.5 

C5  1.2 15 1.49 14.85 24.16 1 

C6 1.2 37.5 1.30 36.94 8.33 1.49 

C7 3.3 17 3.44 18.04 4.24 6.11 

C8 3.3 37.5 3.11 38.06 5.75 1.49 

C9 3.3 60 3.16 58.48 4.242 2.53 

C10 5 37.5 4.52 36.06 9.6 3.84 

 

4.6 Optimization algorithms performances 

In iterative identification problems, the computational time is an issue because of the repetitive nature 

of the computation. Fitness evaluation is the most significant contributor to computational cost. 

However, since the evaluation time is considered invariable for the same problem, the optimization 

convergence speed becomes an important issue. Therefore, the efficiency of the identification 

calculation highly depends on the chosen optimization algorithm.  

CS is a well-known search algorithm inspired by the parasitic reproduction strategy of cuckoo birds. 

They lay their eggs in the nests of the host’s birds, who may discover that and either destroy the egg or 

abandon the nest [42]; in the formulation of this algorithm, the number of available host nests is constant. 

Thus, a host can discover an alien egg with a probability of Pa between 0 and 1.  

The TLBO is a parameter-less algorithm that mimics teaching and learning abilities in a classroom [43], 

with two primary stages in each iteration. The teacher phase, where the best solution influences all 

population members. And on the other hand, there is the learning phase. Here the fitnesses of individuals 

are compared with each other.  GWO is a widely used optimization algorithm inspired by the hunting 

behavior of a grey wolf pack, and it simulates the hierarchical system by ranking by fitness values.  
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In this case, we consider YA, GWO, and TLBO along with CS using the data issued from the four 

sensor points described earlier, with a 2% noise level. For the sake of performance comparison, each 

algorithm performs 20 runs, with a population size of 30 and a maximum number of iterations equal to 

100. For CS, the probability Pa is chosen equal to 0.25. Fig.10 depicts the average fitness convergence 

for these algorithms in the case of crack C8 (S=3.3 mm, 𝜃 =37.5°). And Table 3 report the analysis of 

the results. 

 

 

Figure 11. Average fitness convergence by YA, TLBO, GWO, and CS algorithms in C8 

 

Fig. 11 shows that although all algorithms converge to the same fitness value, YA and TLBO 

algorithms converge rapidly, around the 20th iteration, relatively to CS and GWO that converge before 

the 40 and 80 iterations, respectively.  

 

We note that in terms of identification quality, the results show that the crack size and orientation 

can be estimated precisely by all algorithms, despite the noise in the data issued and the low number of 

sensors. However, YA and TLBO algorithms provided quick convergence to the optimum, which means 

fewer iterations can be sufficient. Furthermore, YA and GWO algorithms are advantageous in 

computational time because both these algorithms are based on very few steps and require a single 

evaluation in each iteration.  

 

Table 3. Performance of YA, TLBO, GWO, and CS algorithms in case C8 using four sensor points 

under 2% noise. 

 

 Average 

Time (s) 

Best fitness 

value 

The standard 

deviation of the 

fitness 

Best crack size mm 

(error %) 

Best crack 

orientation° 

(error %) 

YA 15.54 4.251 10-4 1.34 10-17 3.10 (6.06) 37.40 (0.26) 

TLBO 31.72 4.251 10-4 2.81 10-17 3.10 (6.06) 37.40 (0.26) 

GWO 15.63 4.254 10-4 1.01 10-8 3.10 (6.06) 37.06 (1.17) 

CS 30.23 4.252 10-4 4.87 10-7 3.10 (6.06) 37.62 (0.32) 
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5 Identification using dynamic analysis  

5.1. Experimental setup 

 

This section expands on the study made in Ref  [41] using experimental data issues from a frequency 

response of a 400mm by 330 mm metallic plate, shown in Fig. 12. Young’s modulus, 2.25 1011 (N/M2), 

the Poisson's ratio 0.3, the density of 7850 kg/m3, and the thickness of 2 mm.  

6 PCB Accelerometers (356A15), excited with a PCB hammer (086C03) to measure the vibration. 

Fig.12 shows the positions of the six accelerometers. Fig.13 shows the experimental setup.  

 

 
Figure 12. Plate dimensions and accelerometer positions 

 
Figure 13. Experimental setup.  

5.2. POD-RBF based on experimental data  

 

We consider in this study three crack orientations. The horizontal crack (0°) and the crack at an angle 

of 45° start from the center of the left side. On the other hand, the vertical crack (90°) starts from the 

center of the top side of the plate. In this study, the vibrational response is considered for crack varying 

between 0 (no crack) and 80 mm. with a step of 10 mm.  
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Using the Frequency Response Function (FRF) measured for 27 cracks, a POD-RBF model is 

constructed and truncated with 19 vectors. In this point, the ratio between the neglected eigenvalues and 

the retained ones is less than 10-10. As shown in Fig. 14. Fig. 15 shows the experimental FRF at crack 

length 25 mm and orientation of 45°, compared to the predicted FRF calculated by the POD-RBF model.  

This figure highlights a good agreement between the model predictions and experimental measurement 

at modes positions.  

 

 
Figure 14. The truncation point on the dynamic model 

 

 

 
 

Figure 15. Experimental FRF from 25 mm crack at 45° vs. predicted using POD-RBF 

5.3. Fitness evaluation base on experimental data  

 

We consider in this study seven crack cases. To solve this inverse problem, the YA is run 20 times 

for each test crack to minimize Eq. 9. using a population of 30, the maximum number of iterations is 

100. Table 4 summarizes the results in the form of an average over the 20 runs.  

Table 4 presented the error as the absolute difference between the actual and predicted crack. The 

results show that the maximum error for size prediction is 2.76 mm, and the orientation is 0.43°.  
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Table 4. Identified cracks based on the experimental dynamic study 

  

Studied cases Real crack Estimated crack Error 

 s (mm) 𝜃 (°) s (mm) 𝜃 (°) s (%) 𝜃 (%) 

C11 25 0 22.24 0.032 11.04 - 

C12 75 0 73.29 1.26 10-5 2.28 - 

C13 25 45 24.89 45.05 0.44 0.11 

C14 75 45 74.73 44.57 0.36 0.95 

C15  10 90 7.710 89.99 22.9 0.01 

C16 50 90 49.82 89.99 0.36 0.01 

C17 75 90 74.05 89.94 1.26 0.06 

 

 

An example of fitness convergence and the convergence of the crack parameters is presented in Fig 

16 for cases C14 (Table 4). In Fig. 16(a), The fitness value 𝑓(𝑃) Reach a value of 1.0 10-3 before the 

20th iteration. For example, fig. 16(b) and Fig.17 (c) show that crack size and orientation converged to 

a solution close to the exact value in 20 iterations.  

 

(a) (b) (c) 

   
 

Figure 16. C14 crack parameter identification versus iterations 

5.4. Optimization algorithms performances  

 

We compare the performance of the four algorithms YA, GWO, TLBO, and CS in this section. Each 

algorithm performs 20 runs, where the population size is 30, and the maximum number of iterations is 

100. Fig. 17 depicts the average fitness convergence for these algorithms in the case of crack C14 (S=75 

mm, 𝜃 =45°). And Table 5 report the analysis of the results. Table 6, on the other hand, report the 

performances of the algorithms in the case C11, where the error is high. 

Fig. 17 shows that although all algorithms converge to the same fitness value, YA and TLBO 

algorithms converge rapidly, around the 30th iteration, relatively to CS that converge before the 50th and 

GWO converged at 100 iterations.  

The results show that the crack size and its orientation can be estimated precisely by all algorithms 

in terms of identification quality. However, YA and TLBO algorithms provided quick convergence, 

with an advantage over TLBO. Finally, we should mention that TLBO uses twice the number of 

evaluations in each iteration as opposed to the other algorithms. Thus it spends double the computational 

cost on evaluation.  This observation is apparent in table 5 results. Results in Table 6 suggest that the 

high error found earlier in table 4 is due to the limitation of the POD-RBF model. As the model is built 
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using a limited set of experimental results, POD-RBF estimation accuracy is lower when cases near the 

boundaries of the known data, like in the case of C11 and the case C15, that correspond to0° and 90° 

respectively.   

 

 
Figure 17. Average fitness convergence by YA, TLBO, GWO, and CS algorithms in C14 

 

 

Table 5. Performance of YA, TLBO, GWO, and CS algorithms in case C14  

 

 Average 

Time (s) 

Best fitness 

value 

The standard 

deviation of the 

fitness 

Best crack size 

mm (error %) 

Best crack 

orientation° 

(error %) 

YA 12.30 0.000985 2.4 10-15 74.73 (0.36) 44.57 (0.95) 

TLBO 24.11 0.000985 8.44 10-15 74.73 (0.36) 44.53 (0.95) 

GWO 12.72 0.001015 2.93 10-5 74.72 (0.37) 44.57 (1.04) 

CS 23.96 0.000985 1.68 10-8 74.73 (0.36) 44.57 (0.95) 

 

 

Table 6. Performance of YA, TLBO, GWO, and CS algorithms in case C11  

 

 Average 

Time (s) 

Best fitness 

value 

The standard 

deviation of the 

fitness 

Best crack size 

mm (error %) 

Best crack 

orientation°  

YA 12.35 1.63 E-03 6.51 E-07 22.24 (11.04) 0.03 

TLBO 25.33 1.63 E-03 3.21 E-17 22.17 (11.32) 0.00 

GWO 12.49 1.63 E-03 4.56 E-10 22.18 (11.28) 0.00 

CS 24.68 1.63 E-03 2.79E-09 22.17 (11.32) 0.00 
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6 Conclusion 

 

We have presented in this paper a new metaheuristic algorithm and applied it to the study of inverse 

crack identification based on the POD-RBF technique. We considered two studies, namely, Elastostatic 

based on FEM analysis and a vibrational study based on experimental data. The method is effective 

compared to recently published algorithms, such as GWO, CS, and TLBO.  

Moreover, we have shown that the presented method is stable concerning noisy input data, 

mimicking the measurement uncertainty, and limited sensors.  

We compare the performance of the suggested algorithm to GWO, CS, and TLBO algorithms. The 

results indicate that these algorithms can efficiently identify the size and orientation of the crack 

accurately, with YA having an advantage in terms of computation time.   

The future study combines the new algorithm YA with the local optimization method in crack 

detections using eddy current tomography. As well as investigate the performance of metaheuristic 

algorithms for robust minimization procedures based on DNN, as such methods provide higher 

flexibility in optimization and uncertainty evaluation and constitute frameworks to solve both inverse 

and forward problems.   

 

Replication of Results 

The results presented in this article can replicate by implementing the data structures and algorithms 

presented in the article. All the references are reported in the paper, as well as the algorithm. In any case, the 

code (developed in MATLAB) is available upon request from the authors; the YUKI algorithm package is 

planned to be released after the acceptance of this paper. 
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